CTU Open 2023

Presentation of solutions

October 21, 2023

Natatorium

Natatorium

- Find the two primes P_i that divide C
- If C is a product of two primes P and Q, then P and Q are the only primes that divide C

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Task: Simulate run of an elementary celular automata.

current automaton contents

rule 30 (00011110)

Beth

Beth's Cookies

- Valid bracket sequence on the input.
- Create an expression with the following rules and evaluate it.
 - $() \rightarrow (1)$ $() \rightarrow)*($
 - ►)) →)+1)

Proglute

Task: There are *N* points on a circle, connect them all with a path that does not cross itself.

- ► **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- ► **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- ► **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

► Therefore, for any such fixed subpath containing at most N - 2 points we have two possibilities how to extend the subpath.

- ► **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- Therefore, for any such fixed subpath containing at most N - 2 points we have two possibilities how to extend the subpath.
- The path can start in any point but it is not oriented.

- ► **Task:** There are *N* points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- ► Therefore, for any such fixed subpath containing at most N - 2 points we have two possibilities how to extend the subpath.
- The path can start in any point but it is not oriented.
- In total there are $2^{N-2}\frac{N}{2} = 2^{N-3}N$ such paths.

Digitalisation

Digitalisation

- ► Task: Match students with *M* · *C* slots in schools based on preferences on both sides
- Stable marriage problem
 - Stable = no local improvement possible
 - Local improvement = a slot and a student connect, possibly breaking their current ties, to improve the situation for both
 - Known: There exists a matching that is stable

Digitalisation – Does it always finish?

Write a string, one symbol per student, from best to worst:

f for first choice, s for second choice, x for nothing

 Each local improvement makes the string lexicographically smaller

A student gets to a better state, a worse student may get worse

Digitalisation – Can it be done faster and simpler?

Find the lexicograhically smallest string right away

- Go from the best student to the worst and assign their most preferred choice that's not full yet
- Time O(N + M)
 - Faster than the general solution for Stable marriage problem, thanks to all schools having the same preferences

Expressions

▶ First observation: We care about modulo 2 for each element.

Expressions

- ► First observation: We care about modulo 2 for each element.
- Second observation: We care for "blocks of products".

Expressions

- First observation: We care about modulo 2 for each element.
- Second observation: We care for "blocks of products".
- ▶ Preprocess $\mathcal{O}(n)$, Query $\mathcal{O}(1)$.

 Quickly decide which of two commodities are more prevalent in neighborhood of a vertex.

 \rightarrow We can keep only info on their difference.

Quickly update number of commodities in a vertex.

Let *N* be the input size:

- Elementary approach always iterate neighbors $\mathcal{O}(N^2)$
- Faster approach partition vertices by their degrees $\leq \sqrt{N}$ and $> \sqrt{N}$

- ► for small degrees iterate all neighbors $\mathcal{O}(N\sqrt{N})$
- for big degrees update its final sum $\mathcal{O}(N\sqrt{N})$

For big degree vertices:

- keep the final sum in the vertex
- there are at most \sqrt{N} high degree vertices
- update the final sum whenever a neighbor vertex is updated
- $\blacktriangleright \rightarrow \mathcal{O}(N\sqrt{N})$

Gcd

GCD

▶ **Task:** Find order of an array A such that $S = \sum_{i=1}^{N-1} \text{gcd}(A_i, A_{i+1})$ is maximized.

GCD

- ▶ **Task:** Find order of an array A such that $S = \sum_{i=1}^{N-1} \text{gcd}(A_i, A_{i+1})$ is maximized.
- ► Observation: Put the same numbers together. Suppose the optimal order is A = ... bac...xay... has sum S. We want to show that order A' = ... bc...xaay... has sum S' ≥ S.
 - gcd(b, a), gcd(a, c) ≤ $\frac{a}{2}$: Then, S' = S - gcd(b, a) - gcd(a, c) + a + gcd(b, c) > S - $\frac{2}{2}a + a \ge S$.
 gcd(b, a) = a: Then gcd(b, c) ≥ gcd(a, c). Therefore, S' = S - gcd(b, a) - gcd(a, c) + a + gcd(b, c) ≥ S + a - gcd(b, a) ≥ S.

GCD

- ▶ **Task:** Find order of an array A such that $S = \sum_{i=1}^{N-1} \text{gcd}(A_i, A_{i+1})$ is maximized.
- ► Observation: Put the same numbers together. Suppose the optimal order is A = ... bac ... xay ... has sum S. We want to show that order A' = ... bc ... xaay ... has sum S' ≥ S.
 - gcd(b, a), gcd(a, c) ≤ ^a/₂: Then, S' = S - gcd(b, a) - gcd(a, c) + a + gcd(b, c) > S - ²/₂a + a ≥ S.
 gcd(b, a) = a: Then gcd(b, c) ≥ gcd(a, c). Therefore, S' = S - gcd(b, a) - gcd(a, c) + a + gcd(b, c) ≥ S + a - gcd(b, a) ≥ S.
- We can reduce the instance to only consider one of each numbers in A. There are at most 20 such numbers.

Finding the solution is equal of solving a TSP on a complete graph G = (V, E), where V are the unique values and an edge {u, v} ∈ E has weight gcd(u, v).

- Finding the solution is equal of solving a TSP on a complete graph G = (V, E), where V are the unique values and an edge {u, v} ∈ E has weight gcd(u, v).
- TSP can be solved with a DP in time $(2^{|V|} \cdot |V|^2)$.

- Finding the solution is equal of solving a TSP on a complete graph G = (V, E), where V are the unique values and an edge {u, v} ∈ E has weight gcd(u, v).
- TSP can be solved with a DP in time $(2^{|V|} \cdot |V|^2)$.
- Can be further optimized by putting the number 1 and primes larger than ^N/₂ in the front of the array as their GCD with any other number is 1.

Hamster

Hamster

- Task: Given a set of unit length edges connecting some pairs of integer points, how many additional (unit length) edges do we need to create an enclosed region?
- Consider as a graph: vertices are integer points, edges are given on the input.
- First recognize connected components (DFS/BFS).

3 edges are always enough: given one edge, use 3 more to create a unit square.

Are 2 edges enough?

 Case 1: We can add 2 edges between two components at different places.

Case 2: We can add 2 edges, connecting two different vertices of one connected component by a new path.

Is 1 edge enough?

Only case: We can add 1 edge to place without an edge, connecting two different vertices of one connected component.

Is 0 edges enough?

► A connected component contains a cycle.

- ► The cost(a) of an integer point a = (a₁, a₂,..., a_d) is cost(a) = |a₁| + |a₂| + ··· + |a_d|.
- Given a *d*-dimensional ball with radius *r*, compute the sum of costs of all integer points inside it.

- ► The cost(a) of an integer point a = (a₁, a₂,..., a_d) is cost(a) = |a₁| + |a₂| + ··· + |a_d|.
- Given a *d*-dimensional ball with radius *r*, compute the sum of costs of all integer points inside it.
- First solve subtask: Count the number of integer points in *d*-dimensional sphere of radius *r*.
- ▶ Idea: Decompose a *d*-dimensional sphere of radius *r* into 2r + 1 (*d* − 1)-dimensional spheres.

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $0^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 0^2$

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $1^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 1^2$

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $2^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 2^2$

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $3^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 3^2$

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $4^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 4^2$

•
$$x_1^2 + x_2^2 + x_3^2 \le 5^2$$

• $5^2 + x_2^2 + x_3^2 \le 5^2$
• $x_2^2 + x_3^2 \le 5^2 - 5^2$

Dynamic programming - parameters: dimension and radius squared.

$$f(d, rs) = \sum_{-\sqrt{rs} \le i \le \sqrt{rs}} f(d - 1, rs - i^2)$$
$$f(1, rs) = 1 + 2\lfloor \sqrt{rs} \rfloor$$

• Extending to counting the costs is simple: $g(d, rs) = \sum_{-\sqrt{rs} \le i \le \sqrt{rs}} g(d - 1, rs - i^2) + |i| \cdot f(d - 1, rs - i^2)$ $g(1, rs) = 2\lfloor \sqrt{rs}(\sqrt{rs} + 1)/2 \rfloor$

• This DP is computed in $\mathcal{O}(dr^3)$.

Clubbing

Lets firstly ensure that we can answer queries "does a set contain ANY club?"!

Clubbing

- Lets firstly ensure that we can answer queries "does a set contain ANY club?"!
- We can represent each club as bitmask. And for each mask we are able to precalculate sub-masks it contains in O(2^{|U|}).

Clubbing

- Lets firstly ensure that we can answer queries "does a set contain ANY club?"!
- We can represent each club as bitmask. And for each mask we are able to precalculate sub-masks it contains in O(2^{|U|}).
- Now we can iterate over all "minimal" substrings (with two pointers) and "keep" the set of clubs in it: O(L)

- ▶ Input: array a_1, a_2, \ldots, a_n of *n* numbers, $a_i \leq 10^6$, $n \leq 10^5$.
- **Task**: For each query s, t, k, find out if k divides the product $a_s \cdot a_{s+1} \cdot a_{s+2} \cdot \cdots \cdot a_{t-1} \cdot a_t$.
- First factorize all a_i. For instance using the Eratosthenes sieve, keeping track of the least prime divider.
- ► For each prime p ≤ 10⁶, keep sorted array of the indices where it appears.
- Answer each query in $\mathcal{O}(log(a_i) \log(n))$:
- Use binary search to count, how many times each prime appears in the interval.
- Check if each prime appears at least as many times in the product, as it appears in k.

- **Input**: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3. Indices where primes are found:
- 2:0,2,3,3,4,4,5,5,5,6,6,6,6,7,7.
- ► 3 : 1, 2, 3.

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3. Indices where primes are found:
- 2:0,2,3,3,4,4,5,5,5,6,6,6,6,7,7.
- ► 3 : 1, 2, 3.
- Query: $s = 1, t = 3, k = 72 = 2^3 \cdot 3^2$.

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3. Indices where primes are found:
- 2: 0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7.
- ► 3 : **1**, **2**, **3**.
- Query: $s = 1, t = 3, k = 72 = 2^3 \cdot 3^2$.

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3. Indices where primes are found:
- 2:0,2,3,3,4,4,5,5,5,6,6,6,6,7,7.
- ► 3 : **1**, **2**, **3**.
- Our product is $2^3 \cdot 3^3$, thus it is divisible by k.
- Query: $s = 1, t = 3, k = 72 = 2^3 \cdot 3^2$.

Thank you for your attention!