CTU Open 2023
 Presentation of solutions

October 21, 2023

Natatorium

Natatorium

- Find the two primes P_{i} that divide C
- If C is a product of two primes P and Q, then P and Q are the only primes that divide C

Wall

- Task: Simulate run of an elementary celular automata.
current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton

- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton

- Task: Simulate run of an elementary celular automata.
current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.

current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

$$
\text { rule } 30 \text { (00011110) }
$$

the next generation of the automaton
\square

- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square
- Task: Simulate run of an elementary celular automata.
current automaton contents

rule 30 (00011110)

the next generation of the automaton
\square

Beth

Beth's Cookies

- Valid bracket sequence on the input.
- Create an expression with the following rules and evaluate it.
$\rightarrow() \rightarrow(1)$
-) $(\rightarrow) *($
-)) \rightarrow) +1)

Proglute

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- Therefore, for any such fixed subpath containing at most $N-2$ points we have two possibilities how to extend the subpath.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- Therefore, for any such fixed subpath containing at most $N-2$ points we have two possibilities how to extend the subpath.
- The path can start in any point but it is not oriented.

Proglute

- Task: There are N points on a circle, connect them all with a path that does not cross itself.
- Observation: Any subpath containing an end of the path contains only consecutive points.

- Therefore, for any such fixed subpath containing at most $N-2$ points we have two possibilities how to extend the subpath.
- The path can start in any point but it is not oriented.
- In total there are $2^{N-2} \frac{N}{2}=2^{N-3} N$ such paths.

Digitalisation

Digitalisation

- Task: Match students with M • C slots in schools based on preferences on both sides
- Stable marriage problem
- Stable $=$ no local improvement possible
- Local improvement $=$ a slot and a student connect, possibly breaking their current ties, to improve the situation for both
- Known: There exists a matching that is stable

Digitalisation - Does it always finish?

- Write a string, one symbol per student, from best to worst:
- f for first choice, s for second choice, x for nothing
- Each local improvement makes the string lexicographically smaller
- A student gets to a better state, a worse student may get worse

Digitalisation - Can it be done faster and simpler?

- Find the lexicograhically smallest string right away
- Go from the best student to the worst and assign their most preferred choice that's not full yet
- Time $O(N+M)$
- Faster than the general solution for Stable marriage problem, thanks to all schools having the same preferences

Expressions

Expressions

- First observation: We care about modulo 2 for each element.

Expressions

- First observation: We care about modulo 2 for each element.
- Second observation: We care for "blocks of products".

Expressions

- First observation: We care about modulo 2 for each element.
- Second observation: We care for "blocks of products".
- Preprocess - $\mathcal{O}(n)$, Query - $\mathcal{O}(1)$.

Movers

Movers

- Quickly decide which of two commodities are more prevalent in neighborhood of a vertex.
\rightarrow We can keep only info on their difference.

- Quickly update number of commodities in a vertex.

Movers

Let N be the input size:

- Elementary approach - always iterate neighbors $\mathcal{O}\left(N^{2}\right)$
- Faster approach partition vertices by their degrees $\leq \sqrt{N}$ and $>\sqrt{N}$

- for small degrees - iterate all neighbors $\mathcal{O}(N \sqrt{N})$
- for big degrees - update its final sum $\mathcal{O}(N \sqrt{N})$

Movers

For big degree vertices:

- keep the final sum in the vertex
- there are at most \sqrt{N} high degree vertices
- update the final sum whenever a neighbor vertex is updated
- $\rightarrow \mathcal{O}(N \sqrt{N})$

Gcd

- Task: Find order of an array A such that $S=\sum_{i=1}^{N-1} \operatorname{gcd}\left(A_{i}, A_{i+1}\right)$ is maximized.
- Task: Find order of an array A such that $S=\sum_{i=1}^{N-1} \operatorname{gcd}\left(A_{i}, A_{i+1}\right)$ is maximized.
- Observation: Put the same numbers together. Suppose the optimal order is $A=\ldots b \mathbf{a} c \ldots x \mathbf{a} y \ldots$ has sum S. We want to show that order $A^{\prime}=\ldots b c \ldots$ xaay \ldots has sum $S^{\prime} \geq S$.
$-\operatorname{gcd}(b, a), \operatorname{gcd}(a, c) \leq \frac{a}{2}$:
Then,

$$
S^{\prime}=S-\operatorname{gcd}(b, a)-\operatorname{gcd}(a, c)+a+\operatorname{gcd}(b, c)>S-\frac{2}{2} a+a \geq S
$$

- $\operatorname{gcd}(b, a)=a$:

Then $\operatorname{gcd}(b, c) \geq \operatorname{gcd}(a, c)$. Therefore,

$$
\begin{aligned}
& S^{\prime}=S-\operatorname{gcd}(b, a)-\operatorname{gcd}(a, c)+a+\operatorname{gcd}(b, c) \geq \\
& S+a-\operatorname{gcd}(b, a) \geq S .
\end{aligned}
$$

- Task: Find order of an array A such that $S=\sum_{i=1}^{N-1} \operatorname{gcd}\left(A_{i}, A_{i+1}\right)$ is maximized.
- Observation: Put the same numbers together. Suppose the optimal order is $A=\ldots b \mathbf{a} c \ldots$ xay \ldots has sum S. We want to show that order $A^{\prime}=\ldots b c \ldots x \mathbf{a a y} \ldots$ has sum $S^{\prime} \geq S$.
$-\operatorname{gcd}(b, a), \operatorname{gcd}(a, c) \leq \frac{a}{2}$:
Then,

$$
S^{\prime}=S-\operatorname{gcd}(b, a)-\operatorname{gcd}(a, c)+a+\operatorname{gcd}(b, c)>S-\frac{2}{2} a+a \geq S
$$

- $\operatorname{gcd}(b, a)=a$:

Then $\operatorname{gcd}(b, c) \geq \operatorname{gcd}(a, c)$. Therefore,

$$
\begin{aligned}
& S^{\prime}=S-\operatorname{gcd}(b, a)-\operatorname{gcd}(a, c)+a+\operatorname{gcd}(b, c) \geq \\
& S+a-\operatorname{gcd}(b, a) \geq S
\end{aligned}
$$

- We can reduce the instance to only consider one of each numbers in A. There are at most 20 such numbers.
- Finding the solution is equal of solving a TSP on a complete graph $G=(V, E)$, where V are the unique values and an edge $\{u, v\} \in E$ has weight $\operatorname{gcd}(u, v)$.
- Finding the solution is equal of solving a TSP on a complete graph $G=(V, E)$, where V are the unique values and an edge $\{u, v\} \in E$ has weight $\operatorname{gcd}(u, v)$.
- TSP can be solved with a DP in time $\left(2^{|V|} \cdot|V|^{2}\right)$.
- Finding the solution is equal of solving a TSP on a complete graph $G=(V, E)$, where V are the unique values and an edge $\{u, v\} \in E$ has weight $\operatorname{gcd}(u, v)$.
- TSP can be solved with a DP in time $\left(2^{|V|} \cdot|V|^{2}\right)$.
- Can be further optimized by putting the number 1 and primes larger than $\frac{N}{2}$ in the front of the array as their GCD with any other number is 1 .

Hamster

Hamster

- Task: Given a set of unit length edges connecting some pairs of integer points, how many additional (unit length) edges do we need to create an enclosed region?
- Consider as a graph: vertices are integer points, edges are given on the input.
- First recognize connected components (DFS/BFS).

- 3 edges are always enough: given one edge, use 3 more to create a unit square.

Are 2 edges enough?

- Case 1: We can add 2 edges between two components at different places.

- Case 2: We can add 2 edges, connecting two different vertices of one connected component by a new path.

Is 1 edge enough?

- Only case: We can add 1 edge to place without an edge, connecting two different vertices of one connected component.

Is 0 edges enough?

- A connected component contains a cycle.

Screamers

Screamers

- The $\operatorname{cost}(a)$ of an integer point $a=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ is $\operatorname{cost}(a)=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{d}\right|$.
- Given a d-dimensional ball with radius r, compute the sum of costs of all integer points inside it.

Screamers

- The $\operatorname{cost}(a)$ of an integer point $a=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ is $\operatorname{cost}(a)=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{d}\right|$.
- Given a d-dimensional ball with radius r, compute the sum of costs of all integer points inside it.
- First solve subtask: Count the number of integer points in d-dimensional sphere of radius r.
- Idea: Decompose a d-dimensional sphere of radius r into $2 r+1(d-1)$-dimensional spheres.

Screamers

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \quad \therefore \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& 0^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-0^{2}
\end{aligned}
$$

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \quad \therefore \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& 1^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-1^{2}
\end{aligned}
$$

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq \\
& >2^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-2^{2}
\end{aligned}
$$

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& 3^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-3^{2}
\end{aligned}
$$

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \quad \therefore \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& 4^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-4^{2}
\end{aligned}
$$

Screamers

$$
\begin{aligned}
& r^{2}=5^{2}-4^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-2^{2} \quad \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-0^{2} \\
& r^{2}=5^{2}-1^{2} \\
& r^{2}=5^{2}-2^{2} \\
& r^{2}=5^{2}-3^{2} \\
& r^{2}=5^{2}-4^{2} \\
& \\
& \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq \\
& \\
& 5^{2}+x_{2}^{2}+x_{3}^{2} \leq 5^{2} \\
& \\
& x_{2}^{2}+x_{3}^{2} \leq 5^{2}-5^{2}
\end{aligned}
$$

Screamers

- Dynamic programming - parameters: dimension and radius squared.

$$
\begin{gathered}
f(d, r s)=\sum_{-\sqrt{r s} \leq i \leq \sqrt{r s}} f\left(d-1, r s-i^{2}\right) \\
f(1, r s)=1+2\lfloor\sqrt{r s}\rfloor
\end{gathered}
$$

- Extending to counting the costs is simple:

$$
\begin{gathered}
g(d, r s)=\sum_{-\sqrt{r s} \leq i \leq \sqrt{r s}} g\left(d-1, r s-i^{2}\right)+|i| \cdot f\left(d-1, r s-i^{2}\right) \\
g(1, r s)=2\lfloor\sqrt{r s}(\sqrt{r s}+1) / 2\rfloor
\end{gathered}
$$

- This DP is computed in $\mathcal{O}\left(d r^{3}\right)$.

Clubbing

Clubbing

- Lets firstly ensure that we can answer queries " does a set contain ANY club?"!

Clubbing

- Lets firstly ensure that we can answer queries " does a set contain ANY club?"!
- We can represent each club as bitmask. And for each mask we are able to precalculate sub-masks it contains in $\mathcal{O}\left(2^{|U|}\right)$.

Clubbing

- Lets firstly ensure that we can answer queries "does a set contain ANY club?"!
- We can represent each club as bitmask. And for each mask we are able to precalculate sub-masks it contains in $\mathcal{O}\left(2^{|U|}\right)$.
- Now we can iterate over all "minimal" substrings (with two pointers) and "keep" the set of clubs in it: $\mathcal{O}(L)$

Fragmentation

Fragmentation

- Input: array $a_{1}, a_{2}, \ldots, a_{n}$ of n numbers, $a_{i} \leq 10^{6}, n \leq 10^{5}$.
- Task: For each query s, t, k, find out if k divides the product $a_{s} \cdot a_{s+1} \cdot a_{s+2} \cdots \cdot a_{t-1} \cdot a_{t}$.
- First factorize all a_{i}. For instance using the Eratosthenes sieve, keeping track of the least prime divider.
- For each prime $p \leq 10^{6}$, keep sorted array of the indices where it appears.
- Answer each query in $\mathcal{O}\left(\log \left(a_{i}\right) \log (n)\right)$:
- Use binary search to count, how many times each prime appears in the interval.
- Check if each prime appears at least as many times in the product, as it appears in k.

Fragmentation

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3. Indices where primes are found:
- $2: 0,2,3,3,4,4,5,5,5,6,6,6,6,7,7$.
- $3: 1,2,3$.

Fragmentation

- Input: 2, 3, 6, 12, 4, 8, 16, 4 .
- Primes in input: 2,3. Indices where primes are found:
- $2: 0,2,3,3,4,4,5,5,5,6,6,6,6,7,7$.
- $3: 1,2,3$.
- Query: $s=1, t=3, k=72=2^{3} \cdot 3^{2}$.

Fragmentation

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3 . Indices where primes are found:
- $2: 0,2,3,3,4,4,5,5,5,6,6,6,6,7,7$.
- $3: 1,2,3$.
- Query: $s=1, t=3, k=72=2^{3} \cdot 3^{2}$.

Fragmentation

- Input: 2, 3, 6, 12, 4, 8, 16, 4.
- Primes in input: 2,3 . Indices where primes are found:
- $2: 0,2,3,3,4,4,5,5,5,6,6,6,6,7,7$.
- $3: 1,2,3$.
- Our product is $\mathbf{2}^{\mathbf{3}} \cdot \mathbf{3}^{\mathbf{3}}$, thus it is divisible by k.
- Query: $s=1, t=3, k=72=2^{3} \cdot 3^{2}$.

Thank you for your attention!

