
CTU Open 2023
Presentation of solutions

October 21, 2023

Natatorium

Natatorium

▶ Find the two primes Pi that divide C

▶ If C is a product of two primes P and Q, then P and Q are
the only primes that divide C

Wall

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Wall
▶ Task: Simulate run of an elementary celular automata.

Beth

Beth’s Cookies

▶ Valid bracket sequence on the input.
▶ Create an expression with the following rules and evaluate it.

▶ () → (1)
▶)(→)*(
▶)) →)+1)

Proglute

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Proglute

▶ Task: There are N points on a circle, connect them all with a
path that does not cross itself.

▶ Observation: Any subpath containing an end of the path
contains only consecutive points.

▶ Therefore, for any such fixed subpath containing at most
N − 2 points we have two possibilities how to extend the
subpath.

▶ The path can start in any point but it is not oriented.

▶ In total there are 2N−2N
2 = 2N−3N such paths.

Digitalisation

Digitalisation

▶ Task: Match students with M · C slots in schools based on
preferences on both sides

▶ Stable marriage problem
▶ Stable = no local improvement possible
▶ Local improvement = a slot and a student connect, possibly

breaking their current ties, to improve the situation for both
▶ Known: There exists a matching that is stable

Students

Slots in schools

Digitalisation – Does it always finish?

▶ Write a string, one symbol per student, from best to worst:
▶ f for first choice, s for second choice, x for nothing

▶ Each local improvement makes the string lexicographically
smaller
▶ A student gets to a better state, a worse student may get worse

Digitalisation – Can it be done faster and simpler?

▶ Find the lexicograhically smallest string right away
▶ Go from the best student to the worst and assign their most

preferred choice that’s not full yet

▶ Time O(N +M)
▶ Faster than the general solution for Stable marriage problem,

thanks to all schools having the same preferences

Expressions

Expressions

▶ First observation: We care about modulo 2 for each element.

▶ Second observation: We care for ”blocks of products”.

▶ Preprocess - O(n), Query - O(1).

Expressions

▶ First observation: We care about modulo 2 for each element.

▶ Second observation: We care for ”blocks of products”.

▶ Preprocess - O(n), Query - O(1).

Expressions

▶ First observation: We care about modulo 2 for each element.

▶ Second observation: We care for ”blocks of products”.

▶ Preprocess - O(n), Query - O(1).

Movers

Movers

▶ Quickly decide which of two commodities are more prevalent
in neighborhood of a vertex.
→ We can keep only info on their difference.

2

2

2

3

3

2

1

1

3

0

1

2

0 1 -1 0 -3 1

▶ Quickly update number of commodities in a vertex.

Movers

Let N be the input size:

▶ Elementary approach – always iterate neighbors O(N2)

▶ Faster approach –
partition vertices by their degrees ≤

√
N and >

√
N

1 -2 3 -2 0 1 -1 0 -3 1 2

▶ for small degrees – iterate all neighbors O(N
√
N)

▶ for big degrees – update its final sum O(N
√
N)

Movers

For big degree vertices:

▶ keep the final sum in the vertex

▶ there are at most
√
N high degree vertices

▶ update the final sum whenever a neighbor vertex is updated

▶ → O(N
√
N)

0 1 -1 0 -3 1 2 0 1 -1 0 -3 1 2

Gcd

GCD

▶ Task: Find order of an array A such that
S =

∑N−1
i=1 gcd(Ai ,Ai+1) is maximized.

▶ Observation: Put the same numbers together.
Suppose the optimal order is A = . . . bac . . . xay . . . has sum
S . We want to show that order A′ = . . . bc . . . xaay . . . has
sum S ′ ≥ S .
▶ gcd(b, a), gcd(a, c) ≤ a

2 :
Then,
S ′ = S−gcd(b, a)−gcd(a, c)+a+gcd(b, c) > S− 2

2a+a ≥ S .
▶ gcd(b, a) = a:

Then gcd(b, c) ≥ gcd(a, c). Therefore,
S ′ = S − gcd(b, a)− gcd(a, c) + a+ gcd(b, c) ≥
S + a− gcd(b, a) ≥ S .

▶ We can reduce the instance to only consider one of each
numbers in A. There are at most 20 such numbers.

GCD

▶ Task: Find order of an array A such that
S =

∑N−1
i=1 gcd(Ai ,Ai+1) is maximized.

▶ Observation: Put the same numbers together.
Suppose the optimal order is A = . . . bac . . . xay . . . has sum
S . We want to show that order A′ = . . . bc . . . xaay . . . has
sum S ′ ≥ S .
▶ gcd(b, a), gcd(a, c) ≤ a

2 :
Then,
S ′ = S−gcd(b, a)−gcd(a, c)+a+gcd(b, c) > S− 2

2a+a ≥ S .
▶ gcd(b, a) = a:

Then gcd(b, c) ≥ gcd(a, c). Therefore,
S ′ = S − gcd(b, a)− gcd(a, c) + a+ gcd(b, c) ≥
S + a− gcd(b, a) ≥ S .

▶ We can reduce the instance to only consider one of each
numbers in A. There are at most 20 such numbers.

GCD

▶ Task: Find order of an array A such that
S =

∑N−1
i=1 gcd(Ai ,Ai+1) is maximized.

▶ Observation: Put the same numbers together.
Suppose the optimal order is A = . . . bac . . . xay . . . has sum
S . We want to show that order A′ = . . . bc . . . xaay . . . has
sum S ′ ≥ S .
▶ gcd(b, a), gcd(a, c) ≤ a

2 :
Then,
S ′ = S−gcd(b, a)−gcd(a, c)+a+gcd(b, c) > S− 2

2a+a ≥ S .
▶ gcd(b, a) = a:

Then gcd(b, c) ≥ gcd(a, c). Therefore,
S ′ = S − gcd(b, a)− gcd(a, c) + a+ gcd(b, c) ≥
S + a− gcd(b, a) ≥ S .

▶ We can reduce the instance to only consider one of each
numbers in A. There are at most 20 such numbers.

GCD

▶ Finding the solution is equal of solving a TSP on a complete
graph G = (V ,E), where V are the unique values and an
edge {u, v} ∈ E has weight gcd(u, v).

▶ TSP can be solved with a DP in time (2|V | · |V |2).
▶ Can be further optimized by putting the number 1 and primes

larger than N
2 in the front of the array as their GCD with any

other number is 1.

GCD

▶ Finding the solution is equal of solving a TSP on a complete
graph G = (V ,E), where V are the unique values and an
edge {u, v} ∈ E has weight gcd(u, v).

▶ TSP can be solved with a DP in time (2|V | · |V |2).

▶ Can be further optimized by putting the number 1 and primes
larger than N

2 in the front of the array as their GCD with any
other number is 1.

GCD

▶ Finding the solution is equal of solving a TSP on a complete
graph G = (V ,E), where V are the unique values and an
edge {u, v} ∈ E has weight gcd(u, v).

▶ TSP can be solved with a DP in time (2|V | · |V |2).
▶ Can be further optimized by putting the number 1 and primes

larger than N
2 in the front of the array as their GCD with any

other number is 1.

Hamster

Hamster

▶ Task: Given a set of unit length edges connecting some pairs
of integer points, how many additional (unit length) edges do
we need to create an enclosed region?

▶ Consider as a graph: vertices are integer points, edges are
given on the input.

▶ First recognize connected components (DFS/BFS).

▶ 3 edges are always enough: given one edge, use 3 more to
create a unit square.

Are 2 edges enough?

▶ Case 1: We can add 2 edges between two components at
different places.

▶ Case 2: We can add 2 edges, connecting two different vertices
of one connected component by a new path.

Is 1 edge enough?

▶ Only case: We can add 1 edge to place without an edge,
connecting two different vertices of one connected component.

Is 0 edges enough?

▶ A connected component contains a cycle.

Screamers

Screamers

▶ The cost(a) of an integer point a = (a1, a2, . . . , ad) is
cost(a) = |a1|+ |a2|+ · · ·+ |ad |.

▶ Given a d-dimensional ball with radius r , compute the sum of
costs of all integer points inside it.

▶ First solve subtask: Count the number of integer points in
d-dimensional sphere of radius r .

▶ Idea: Decompose a d-dimensional sphere of radius r into
2r + 1 (d − 1)-dimensional spheres.

Screamers

▶ The cost(a) of an integer point a = (a1, a2, . . . , ad) is
cost(a) = |a1|+ |a2|+ · · ·+ |ad |.

▶ Given a d-dimensional ball with radius r , compute the sum of
costs of all integer points inside it.

▶ First solve subtask: Count the number of integer points in
d-dimensional sphere of radius r .

▶ Idea: Decompose a d-dimensional sphere of radius r into
2r + 1 (d − 1)-dimensional spheres.

Screamers

r = 5

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 02 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 02

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 12 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 12

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 22 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 22

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 32 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 32

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 42 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 42

Screamers

r2 = 52 − 42

r2 = 52 − 32

r2 = 52 − 22

r2 = 52 − 12

r2 = 52 − 02

r2 = 52 − 12

r2 = 52 − 22

r2 = 52 − 32

r2 = 52 − 42

▶ x21 + x22 + x23 ≤ 52

▶ 52 + x22 + x23 ≤ 52

▶ x22 + x23 ≤ 52 − 52

Screamers

▶ Dynamic programming - parameters: dimension and radius
squared.

f (d , rs) =
∑

−
√
rs≤i≤

√
rs

f (d − 1, rs − i2)

f (1, rs) = 1 + 2⌊
√
rs⌋

▶ Extending to counting the costs is simple:

g(d , rs) =
∑

−
√
rs≤i≤

√
rs

g(d − 1, rs − i2) + |i | · f (d − 1, rs − i2)

g(1, rs) = 2⌊
√
rs(

√
rs + 1)/2⌋

▶ This DP is computed in O(dr3).

Clubbing

Clubbing

▶ Lets firstly ensure that we can answer queries ”does a set
contain ANY club?”!

▶ We can represent each club as bitmask. And for each mask
we are able to precalculate sub-masks it contains in O(2|U|).

▶ Now we can iterate over all ”minimal” substrings (with two
pointers) and ”keep” the set of clubs in it:O(L)

Clubbing

▶ Lets firstly ensure that we can answer queries ”does a set
contain ANY club?”!

▶ We can represent each club as bitmask. And for each mask
we are able to precalculate sub-masks it contains in O(2|U|).

▶ Now we can iterate over all ”minimal” substrings (with two
pointers) and ”keep” the set of clubs in it:O(L)

Clubbing

▶ Lets firstly ensure that we can answer queries ”does a set
contain ANY club?”!

▶ We can represent each club as bitmask. And for each mask
we are able to precalculate sub-masks it contains in O(2|U|).

▶ Now we can iterate over all ”minimal” substrings (with two
pointers) and ”keep” the set of clubs in it:O(L)

Fragmentation

Fragmentation

▶ Input: array a1, a2, . . . , an of n numbers, ai ≤ 106, n ≤ 105.

▶ Task: For each query s, t, k , find out if k divides the product
as · as+1 · as+2 · · · · · at−1 · at .

▶ First factorize all ai . For instance using the Eratosthenes
sieve, keeping track of the least prime divider.

▶ For each prime p ≤ 106, keep sorted array of the indices
where it appears.

▶ Answer each query in O(log(ai) log(n)):

▶ Use binary search to count, how many times each prime
appears in the interval.

▶ Check if each prime appears at least as many times in the
product, as it appears in k .

Fragmentation

▶ Input: 2, 3, 6, 12, 4, 8, 16, 4.

▶ Primes in input: 2, 3. Indices where primes are found:

▶ 2 : 0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

▶ 3 : 1, 2, 3.

Fragmentation

▶ Input: 2, 3, 6, 12, 4, 8, 16, 4.

▶ Primes in input: 2, 3. Indices where primes are found:

▶ 2 : 0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

▶ 3 : 1, 2, 3.

▶ Query: s = 1, t = 3, k = 72 = 23 · 32.

Fragmentation

▶ Input: 2, 3, 6, 12, 4, 8, 16, 4.

▶ Primes in input: 2, 3. Indices where primes are found:

▶ 2 : 0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

▶ 3 : 1, 2, 3.

▶ Query: s = 1, t = 3, k = 72 = 23 · 32.

Fragmentation

▶ Input: 2, 3, 6, 12, 4, 8, 16, 4.

▶ Primes in input: 2, 3. Indices where primes are found:

▶ 2 : 0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

▶ 3 : 1, 2, 3.

▶ Our product is 23 · 33, thus it is divisible by k .

▶ Query: s = 1, t = 3, k = 72 = 23 · 32.

Thank you for your attention!

